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This paper considers the k -resonance of a toroidal polyhex (or toroidal graphitoid)
with a string (p, q, t) of three integers (p � 2, q � 2, 0 � t � p − 1). A toroidal
polyhex G is said to be k-resonant if, for 1 � i � k, any i disjoint hexagons are mutu-
ally resonant, that is, G has a Kekulé structure (perfect matching) M such that these
hexagons are M-alternating (in and off M). Characterizations for 1, 2 and 3-resonant
toroidal polyhexes are given respectively in this paper.
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1. Introduction

The discovery of the fullerene molecules and nanotubes has stimulated
much interests in other possibilities for carbons. Classical fullerene is an all-car-
bon molecule in which the atoms are arranged on a pseudospherical framework
made up entirely of pentagons and hexagons. Its molecular graph is a finite
trivalent graph embedded on the surface of a sphere with only hexagonal and
(exactly 12) pentagonal faces. Deza et al. [4] considered fullerene’s extension to
other closed surfaces and showed that only four surfaces are possible: sphere,
torus, Klein bottle and projective plane. Unlike spherical fullerenes, toroidal and
Klein bottle’s fullerenes have been regarded as tessellations of entire hexagons on
their surfaces since they must contain no pentagons [4, 11]. For the theoretical
consideration and detailed classifications of hexagonal tilings (dually, triangula-
tions) on the torus and the Klein bottle, see [17, 22]. Toroidal fullerenes are likely
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to have direct experimental relevance since “crop circles fullerenes” discovered by
Liu et al. [14] in 1997 are presumably torus-shaped.

A toroidal polyhex (or toroidal graphitoid, torene) is a toroidal fullerene that
can be described by a string (p, q, t) of three integers (p � 1, q � 1, 0 � t � p−1);
its definition is referred to the next section. Some features of toroidal polyhex-
es with chemical relevance were discussed [9, 10]. For example, a systematic cod-
ing and classification scheme were given for the enumeration of isomers of toroi-
dal polyhexes, the calculation of the spectrum and the count for spanning trees.
There have been a few work in the enumeration of perfect matchings of toroidal
polyhexes by applying various techniques, such as transfer-matrix [12, 21], per-
manent of the adjacency matrix [1], and Pfaffian orientation [8].

This paper considers the k-resonance of toroidal polyhexes. The concept
of k-resonance originates from Clar’s aromatic sextet theory [3] and Randić’s
conjugated circuit model [18,19,20]. In the former Clar found that various
electronic properties of polycyclic aromatic hydrocarbons can be predicted
by defining mutually resonant sextets [7] (i.e., disjoint hexagons that are all
alternating with respect to a Kekulé structure). In Randić’s model a conjugated
hexagon has the largest contribution of the resonance energy among all 4n + 2
conjugated circuits (a cycle is said to be conjugated or resonant if it is alternating
with respect to a Kekulé structure). A benzenoid system is said to be k-resonant
if, for 1 � i � k, any i disjoint hexagons are mutually resonant. For a recent
survey on k-resonant benzenoids and k-cycle resonant graphs, see [5]. Zhang and
Chen [24] characterized completely 1-resonant benzenoid systems, solved such a
problem proposed by Gutman [6] and showed its equivalence to normal ben-
zenoid systems (i.e., each edge is contained in a Kekulé structure). The similar
results were extended to coronoid systems (benzenoids with holes) [2] and plane
bipartite graphs [26]. Later, Zheng [27, 28] characterized general k-resonant ben-
zenoid systems. In particular he showed that any 3-resonant benzenoid systems
are also k-resonant for any integer k � 3 and gave their systematic construc-
tion. The same result and similar construction are still valid for coronoid systems
[2,13] and open-ended carbon nanotubes [23].

In this paper mutually resonant hexagons and k-resonance are naturally
extended to toroidal polyhexes H(p, q, t)(p � 2, q � 2) (in some degenerated
cases, for instance, H(1, q, 0), H(p, 1, 0) and H(p, 1, p − 1), a hexagonal face
is not bounded by a cycle). We point out several hexagon-preserving auto-
morphisms of toroidal polyhexes and thus show the vertex- and hexagon-
transitivity of this kind of graphs. Then we give a sufficient condition for some
disjoint hexagons being mutually resonant whereby we show that all toroidal
polyhexes are 1-resonant only except for (2, 2, 0), though they are all ele-
mentary bipartite graphs. This exception demonstrates a great difference with
the plane situation. Further a simple characterization for 2-resonant toroi-
dal polyhexes are given. Finally we completely characterize 3-resonant toroidal
polyhexes.
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Figure 1. A toroidal polyhex H(p, q, t) for p = 7, q = 5, t = 2.

2. Toroidal polyhex with symmetry

A toroidal polyhex is a 3-regular (cubic or trivalent) graph embedded on the
torus such that each face is a hexagon, described by three parameters p, q and t ,
denoted by H(p, q, t) [16, 22], and drawn in the plane (equipped with the regular
hexagonal lattice L) using the representation of the torus by a p×q-parallelogram
P with the usual boundary identification (see figure 1): each side of P connects
the centers of two hexagons, and is perpendicular to an edge-direction of L, both
top and bottom sides pass through p vertical edges of L while two lateral sides
pass through q edges. First identify its two lateral sides, then rotate the top cycle t

hexagons, finally identify the top and bottom at their corresponding points. From
this we get a toroidal polyhex H(p, q, t) with the torsion t (0 � t � p −1). In fact
there is at least two ways to get such a toroidal polyhex. For example, see [8,16].

We easily know that H(p, q, t) has pq hexagons. 2pq vertices and 3pq

edges. The graph lying in the interior of the parallelogram P has a proper
2-coloring (white-black): the vertices incident with a downward vertical edge and
with two upwardly oblique edges are colored black, and the other vertices white
(see figure 2). Such a 2-coloring is a proper 2-coloring of H(p, q, t), i.e., the end-
vertices of each edge receive distinct colors. Hence we have

Proposition 2.1. H(p, q, t) is a bipartite graph.

For convenience, the hexagons and vertices of H(p, q, t) are labeled as an
ordered pair of non-negative integers in the sense that we take the first com-
ponent to be congruent modulo p and the second modulo q. We first establish
an affine coordinate system XOY (see figure 2) : take the bottom side as x-axis,
a lateral side as y-axis, their intersection as the origin O such that both sides
form an angle of 60◦, and P lies on non-negative region. For any positive inte-
ger n, we shall use Zn to denote the set {0, 1, . . . , n − 1} with arithmetic modulo
n. The distance between a pair of parallel edges in a hexagon is a unit length.
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Figure 2. Labeling for the hexagons and vertices of toroidal polyhex H(p, q, t) for p = 7, q = 5,
t = 2.

Each hexagon is labeled by the coordinates (x, y) of its center, where x ∈ Zp and
y ∈ Zq . Hence such a hexagon is denoted by its label (x, y)(or hxy, hx,y). For
each hexagon hxy , choosing the upper one of a pair of parallel edges perpen-
dicular to y-axis, the black end-vertex is named by bxy (or bx,y) and the white
end-vertex by wxy (or wx,y) (for example, see figure 2). In this notations, each
w0,y , is adjacent to b0,y and each wx,0 to bx+t+1,q−1; the yth layer is the even
cycle w0,yb1,yw1,yb2,y · · · wp−1,yb0,yw0,y, 0 � y � q − 1.

An automorphism φ of a simple graph is a bijection from the vertex-set to
itself so that both φ and the inverse φ−1 preserve the adjacency between verti-
ces. We now define three types of automorpllisms of toroidal polyhex H(p, q, t)

as follows: the l - r shift φlr moves horizontally backward every vertex a unit,
i.e.,

φlr(wx,y) = wx−1,y and φlr(bx,y) = bx−1,y, for every pair (x, y). (1)

The t-b shift φtb moves downwards every vertex a unit from the y-axis, but the
x-coordinates may change. More precisely,

φtb(wx,y) = wx,y−1 and φtb(bx,y) = bx,y−1, for 1 � y � q − 1, (2)

and

φtb(wx,0) = wx+t,q−1 and φtb(bx,0) = bx+t,q−1. (3)
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It can be seen that both shifts φlr and φtb are hexagon-preserving automor-
phism of H(p, q, t). Further φlr and φtb generate a subgroup of the automor-
phism group of H(p, q, t), denoted by 〈φlr , φtb〉, which acts transitively on the
set of hexagons of H(p, q, t); that is, for each pair of hexagons h and h′ there is
a hexagon-preserving automorphism g ∈ 〈φlr , φtb〉 so that g(h) = h′. Hence we
have the following result.

Lemma 2.2. H(p, q, t) is hexagon-transitive.

Finally, let R2 be the rotation of 180◦ about the center of the parallelo-
gram P. Then R2 is also a hexagon-preserving automorphism of H(p, q, t) that
interchanges the black and white vertices. The generated subgroup 〈φlr , φtbR2〉 is
transitive on the vertex-set of H(p, q, t).

Lemma 2.3 (22,16). H(p, q, t) is vertex-transitive.

3. 1-and 2-Resonance

A perfect matching or 1-factor M (Kekulé structure in chemistry) of a graph
G is a set of pairwise disjoint edges of G such that every vertex of G is inci-
dent with an edge in M. A bipartite graph is called elementary [15] if it is con-
nected and each edge is contained in a perfect matching. We easily know that
any toroidal polyhex is an elementary bipartite graph since it is 3-regular. In fact
the edge-set of a toroidal polyhex can be decomposed into three perfect match-
ings so that each consists of all edges with the same edge-direction [8].

The concept for k-resonance is now extended to toroidal polyhexes. The
set of some disjoint hexagons of H(p, q, t) is called a resonant pattern, or
these hexagons are mutually resonant, if H(p, q, t) has a perfect matching M

such that these hexagons are all M-alternating (in and off M) cycles. In some
degenerated cases of toroidal polyhexes, for instance, H(1, q, 0), H(p, 1, 0) and
H(p, 1, p − 1), a hexagonal face is not bounded by a cycle. So we only consider
toroidal polyhexes H(p, q, t) with p � 2 and q � 2. In such cases disjoint hexa-
gons of H(p, q, t) are mutually resonant if and only if the subgraph obtained
from H(p, q, t) by deleting the vertices of the hexagons either has a perfect
matching or is empty (since each hexagonal face is bounded by a cycle with
length 6).

Definition 3.1. For some positive integer k, a toroidal polyhex H(p, q, t) is called
k-resonant if for any i(�k) disjoint hexagons of H(p, q, t) are mutually resonant.

Remark 3.1. By the definition above, a toroidal polyhex H(p, q, t) is k-resonant
if it is (k − 1) –resonant and does not contain any k disjoint hexagons.
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To obtain our characterizations (the main results in this paper) for
k-resonance of toroidal polyhexes, the following provides us a crucial approach.
Let S be a subgraph of a toroidal polyhex H(p, q, t) for which each compo-
nent is either a hexagon or an edge with the end-vertices. Then S is called a
Clar cover [25] if S includes all vertices of H(p, q, t); an ideal configuration if S
is alternately incident with white and black vertices along any direction of each
layer.

Lemma 3.1. Any ideal configuration S of a toroidal polyhex H(p, q, t) can be
extended to a Clar cover, and the hexagons in S are thus mutually resonant.

Proof. Let Ly be the yth layer of H(p, q, t), 0 � y � q − 1. Let Ly − S be
the subgraph obtained from Ly by deleting all vertices of S together with their
incident edges. If S contains a vertex of Ly , each component of Ly − S is a
path with odd length for which the end-vertices have different colors because S
is alternately incident with white and black vertices along the cycle Ly . Hence
each Ly − S has a perfect matching. This implies that H(p, q, t) − S has a per-
fect matching. Hence S can be extended to a Clar cover, and its hexagons are
thus mutually resonant.

In this section we first give 1-resonant toroidal polyhexes, and then charac-
terize 2-resonant toroidal polyhexes.

Theorem 3.2. A toroidal polyhex H(p, q, t)(p, q � 2) is 1-resonant if and only if
(p, q, t) �= (2, 2, 0).

Proof. Since H(p, q, t) is hexagon-transitive (Lemma 2.2), it suffices to check
whether any given hexagon is resonant or not.

Case 0: p = 2 = q. Choose the hexagon h11 (see figure 3). H(2, 2, 0) − h11

consists of exactly two isolated vertices w00 and b01. This implies that
H(2, 2, 0) is not 1-resonant. H(2, 2, 1) − h11 consists of exactly two adja-
cent vertices w00 and b01. Hence H(2, 2, 1) is 1-resonant.

00

01

00

01

(a) (b)

Figure 3. (a) H(2, 2, 0), (b) H(2, 2, 1).
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Figure 4. Illustration for the proof of Theorem 3.2.

Case 1: p � 2 and q � 3. Choose the hexagon h11 (i.e., the cycle
b11w11b20w10b10w01b11, which is hatched in figure 4(left)), and the
vertical edges w00bt+1,q−1, w12b21, w13b22, . . . , w1,q−1b2,q−2 (indicated by
thick lines in figure 4 (left)). The chosen hexagon and vertical edges form
an ideal configuration since it is incident with vertices: w00, b10, w10 and
b20 in the 0th layer; w01, b11, w11 and b21 in the first layer; w1y, b2,y , in
the yth layers, 2 � y � q − 2; and W1,q−1, bt+1,q−1 in the (q − 1)th layer.
Hence by Lemma 3.1 h11 is a resonant hexagon.

Case 2: p � 3 and q � 2. For t �= 0, the same arguments as Case 1 can be made. For
t = 0, we choose the hexagon h2,1 (i.e., the cycle b21w21b30w20b20w11b21),
and vertical edges w00bl,q−1, w02b11,. . . , w0,q−lb1,q−2 (indicated by thick
lines, see figure 4(right)). By the same reason as Case 1 the chosen hexa-
gon and vertical edges form an ideal configuration and the hexagon h21 is
resonant.

Lemma 3.3. H(p, q, t) is 2-resonant for p � 3 and q � 3.

Proof. It suffices to prove that any pair of disjoint hexagons (x1, y1), and
(x2, y2) are mutually resonant, where xi ∈ Zp and yi ∈ Zq . By hexagon-preserving
automorphisms of H(p, q, t) we need only to consider the following situation:

(i) 1 = y1 � y2 � q

2 + 1(� q − 1), and

(ii) 1 = min(x1, x2) � max(x1, x2) � p

2 + 1(� p − 1).

We first show this point. Without loss of generality we may assume that 0 �
yl � y2 � q − 1. If 0 = y1 � y2 � q/2, then we make the reversion of the
t-b shift operation φtb (see equation (2)) to H(p, q, t), i.e., φ−1

tb (x1, 0) = (x1, 1)

and φ−1
tb (x2, y2) = (x2, y2 + 1). The resulting hexagons satisfy statement (i). If

y2 − y1 >
q

2 , then we make the t-b shift operation y2 − 1 times (see equations (2)
and (3)), i.e., (x ′

2, y
′
2) = φ

y2−1
tb (x2, y2) = (x2, y2 − (y2 − 1)) = (x2, 1), and (x ′

1, y
′
1) =

φ
y2−1
tb (x1, y1) ≡ (x ′

1, y1 − (y2 −1)) (mod q). So y ′
1 = y1 − (y2 −1)+q ∈ Zq . Further
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Figure 5. Illustration for Case 1 in the proof of Lemma 3.3.

1 = y ′
2 � y ′

1 = q − (y2 − y1) + 1 < q/2 + 1. Otherwise, y1 � 1 and y2 − y1 � q/2.
Similarly we can reduce this case to (i) by making the t-b shift operation y1 − 1
times. Then, by applying l-r shift operation φlr that makes the y-coordinates to
remain unchanged, similarly we can reduce all cases to the situation (ii).

To prove that (x1, y1) and (x2, y2) are mutually resonant, we will apply
mainly the technique in Lemma 3.1: construct an ideal configuration containing
such two hexagons by choosing a series of additional edges. We now distinguish
the following four cases.

Case 1: x1 = y1 = x2 = 1 and 3 � y2 � q

2 + 1. If y2 � q − 2, then we choose
vertical edges w00bt+1,q−1; w2,ib3,i−1, i = 2, . . . , y2 − 1; w1,j b2,j−1, j = y2 +
1, . . . , q−1, (indicated by thick lines, see figure 5 (left)). If y2 = q−1, then
q = 4 only. For t �= 0, we choose two edges w00bt+1,3 and w22b31. For
t = 0, w00b13 is replaced by w20b33 and the edge w22b31 remain unchanged
(see figure 5 (right)). It is easy to see that the chosen hexagons and ver-
tical edges form an ideal configuration.

Case 2: 1 = x1 < x2 � p

2 + 1 and 1 = y1 < y2 � q

2 + 1. If y2 � q − 2,
then we choose vertical edges w00bt+1,q−1; wx2−1,ibx2,i−1, i = 2, . . . , y2 −
1; wx2,j bx2+1,j−1, j = y2 + 1, . . . , q − 1, which are indicated by thick lines
in figure 6 (left). If y2 = q − 1, then q = 3 or 4. For t �= x2 − 1, we
choose edges w00bt+1,q−1 and wx2−1,2bx2,1 if q = 4, and we only choose
the former if q = 3 since the edge w00bt+1,q−1 is disjoint with the hexa-
gon (x2, y2). For t = x2 − 1, w00bt+1,q−1 is replaced by w20bx2+2,q−1 since
x2+2 ≡/ x2 (mod p), and the other choices remain unchanged (see figure 6
(right)). For each subcase, the subgraph formed by the chosen hexagons
and vertical edges is an ideal configuration.

Case 3: 1 = x2 < x1 � p

2 + 1 and 1 = y1 < y2 � q

2 + 1. If y2 � q − 2,
then we choose vertical edges w00bt+1,q−1; wx1,ibx1+1,i−1, i = 2, . . . , y2 −
1; w1,j b2,j−1, j = y2 + 1, . . . , q − 1, (indicated by thick lines, see figure 7
(left)). If y2 = q − 1, then q = 3 or 4. For t �= 0, we still choose such
edges w00bt+1,q−1 and wx1,ibx1+1,i−1, i = 2, 3, . . . , y2 − 1, since the edge
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Figure 6. Illustration for Case 2 in the proof of Lemma 3.3.

Figure 7. Illustration for Case 3 in the proof of Lemma 3.3.

w00bt+1,q−1 is disjoint with the hexagon (1, y2). For t = 0, w00b1,q−1 is
replaced by w10b2,q−1 and the other choices remain unchanged (see fig-
ure 7 (right)). For each subcase, the chosen hexagons together with such
vertical edges form an ideal configuration.

Case 4: x1 = y1 = y2 = 1 and 3 � x2 � p

2 + 1. This situation is more com-
plicated than the previous three cases. Obviously, p � 4 and 1 � q − 2.
We first choose the vertical edges w1,ib2,i−1, wx2,ibx2+1,i−1, i = 2, . . . , q − 1
(indicated by thick lines, see figure 8).
For t = p−1, 0, 1, . . . , x2−3, we further choose two edges w20bt+3,q−1 and
wx2+1,0bx2+2+t,q−1. Since 2 � t +3 � x2 and x2 +1 � x2 +2+ t � 2x2 −1 �
p + 1 (note that t + 3, x2 + 2 + t ∈ Zp), the chosen part has the incident
vertices w1,q−1, bt+3,q−1, wx2,q−1 and bx2+2+t,q−1 in the (q − 1)th layer that
alternate between white and black in one direction of this layer. The same
fact holds obviously for the other layers.
For t = x2 − 2, x2 − 1, . . . , p − 2, we further choose two edges w20bt+3,q−1

and wx,0bx+1+t,q−1, where x will be determined below. If t = p − 2, then
put x := x2 + 1. Since x2 < 3 + t = p + 1 and x + 1 + t ≡ x2 (mod p), the
chosen part has the four incident vertices w1,q−1, bx2,q−1, wx2,q−1, b3+t,q−1,
ordered in the (q − 1)th layer’s direction. If x2 − 2 � t � p − 3, then
put x := x2 − 2 − t ∈ Zp. Since x2 + 1 � x � p and x + 1 +
t = x2 − 1, the chosen part has the four incident vertices in 0th layer
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Figure 8. Illustration for Case 4 in the proof of Lemma 3.3.

as ordered b10, w10, b20, w20, bx2,0, wx2,0, bx2+1,0, wx,0; in the (q − 1)th layer
as w1,q−1, bx+1+t,q−1, wx2,q−1, b3+t,q−1, which alternate between white and
black.
For each subcase mentioned above the chosen hexagons (x1, y1) and
(x2, y2) together with a series of corresponding vertical edges compose of
an ideal configuration.

Therefore, by Lemma 3.1 any pair of disjoint hexagons are mutually reso-
nant. Namely, H(p, q, t) is 2-resonant for p � 3 and q � 3.

Lemma 3.4. For p � 4, H(p, 2, t) is 2-resonant if and only if t is neither 0 nor
p − 2.

Proof. Suppose t = 0 or p − 2. We are going to show that H(p, 2, t) is not
2-resonant. Choose two disjoint hexagons h11 and h31. Then vertices b20, b30 and
b3+t,1 are neighbors of w20. They lie in the hexagon h11 or h31. Hence w20 is an
isolated vertex of H(p, 2, t) − h11 − h31. This shows that such two hexagons are
not mutually resonant.

For the other cases, i.e., t /∈ {0, p − 2}, we will show that H(p, 2, t) is 2-res-
onant. By a similar argument as in the proof of Lemma 3.3 we consider a pair
of disjoint hexagons (x1, y1) and (x2, y2), where xi ∈ Zp and yi ∈ Z2. If y1 �= y2,
then both hexagons compose of an ideal configuration. Hence they are mutually
resonant by Lemma 3.1. So we only consider the case x1 = y1 = y2 = 1 and
3 � x2 � p/2 + 1(� p − 1) by hexagon-preserving automorphisms of H(p, q, t).

If t = p − 1, 1, 2, . . . , x2 − 4, then we choose w20bt+3,1 and wx2+l,0bx2+2+t,1.
Since 2 � t + 3 � x2 − 1 and x2 + 1 � x2 + 2 + t � 2x2 − 2 � p, the end-vertices
of both chosen edges in the 0th and 1st layers are separated by hexagons (1, 1)

and (x2, 1) (see figure 9). If t = x2 −2, x2 −1, . . . , p−3, then we choose w20bt+3,1

and wx,0bx+1+t,1, where x = x2 − 2 − t + p. Since x2 + 1 � 3 + t � p, x2 + 1 �
x � p and x + 1 + t = p + x2 − 1, the above result also holds. For the last case
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Figure 9. Illustration for the proof of Lemma 3.4 for p = 8, x2 = 5 and t = 1.

t = x2 − 3, we have that x2 � 4 since t �= 0. Since t + 1 = x2 − 2 � 2 and
x2 + 1 � x2 + t = 2x2 − 3 � p − 1, we choose w00bt+1,1 and wx2−1,0bx2+t,1. For
each subcase, the chosen hexagon (1, 1) and (x2, 1) with the chosen edges form
an ideal configuration. Therefore, by Lemma 3.1 the hexagons (1, 1) and (x2, 1)

are mutually resonant.

Lemma 3.5. For q � 1, H(2, q, t) is not 2-resonant.

Proof. Consider the disjoint hexagons h11 and h13. The neighbors of the ver-
tex w02, which are b11, b12 and b02, belong to the chosen hexagons. Hence
H(2, q, t)−h11 −h13 has no perfect matching. Namely hexagons h11 and h13 are
not mutually resonant.

From Lemma 3.2 we know that H(2, 2, 0) is not 1-resonant, H(2, 2, 1),
H(3, 2, t)(t = 0, 1, 2) and H(2, 3, t)(t = 0, 1) are 1-resonant. We can see that
H(2, 2, 1), H(3, 2, 0), H(3, 2, 1), H(2, 3, 0) and H(2, 3, 1) do not contain two dis-
joint hexagons. So automatically they are 2-resonant. Further H(3, 2, 2) is 2-res-
onant since it has exactly 12 vertices, which are all included in any pair of two
disjoint hexagons. Combining these facts and Lemmas 3.3–3.5, we summarize
the following characterization for the 2-resonance of toroidal polyhexes.

Theorem 3.6. For p � 2 and q � 2, a toroidal polyhex H(p, q, t) is 2-resonant
if and only if one of the following cases appears:

1. min(p, q) � 3,

2. p � 4, q = 2 and t /∈ {0, p − 2},
3. (p, q) = (3, 2) or (2, 3),

4. (p, q, t) = (2, 2, 1).

4. 3-Resonance

In this section we further consider the 3-resonance of toroidal polyhexes.
The following lemma shows that most toroidal polyhexes are not 3-resonant.
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Lemma 4.1. For p, q � 4, H(p, q, t) is not 3-resonant.

Proof. Choose three disjoint hexagons h11, h13 and h31. Then vertices w11, w12

and w21 are neighbors of b21. They lie in hexagons h11, h13 and h31, respectively.
Hence H(p, q, t) − h11 − h13 − h31 has an isolated vertex b21. This implies that
such three hexagons are not mutually resonant.

Lemma 4.2. For q � 2, H(3, q, t) is 3-resonant.

Proof. By Lemma 3.3 or Theorem 3.6 H(3, 2, t) and H(3, 3, t) are 2-resonant.
We can easily see that they are 3-resonant since either they contain no three dis-
joint hexagons or their three disjoint hexagons contain all vertices. So we may
assume q � 4.

It suffices to show that any three disjoint hexagons (xi, yi), xi ∈ Z3 and yi ∈
Zq, i = 1, 2, 3, are mutually resonant. By l-r and t-b shift operations there are
three cases to be considered.

Case 1: x1 = 0, x2 = 1, x3 = 2 and y1 = 1. If 2 � y2 < y3 � q−1, then we choose
vertical edges w0j b1,j−1, j = 2, . . . , y2 − 1; w1j b2,j−1, j = y2 + 1, . . . , y3 −
1; w2j b0,j−1, j = y3 + 1, . . . , q − 1; we further choose one vertical edge
w10bt+2,q−1 when t = 1 and 2, and w20b0,q−1 when t = 0 (see figure 10(a)).
If 2 < y3 < y2 � q − 1, then we choose vertical edges w0j b1,j−1, j =
2, . . . , y3 − 1, y3 + 1, . . . , y2 − 1; w2j b0,j−1, j = y2 + 1, . . . , q − 1; we fur-
ther choose one vertical edge w10bt+2,q−1 when t = 0 and 1, and w20b2,q−1

when t = 2 (see figure 10(b)). It can be seen that the three hexagons
together with the chosen edges for any subcase form an ideal configura-
tion. So by Lemma 3.1 such three hexagons are mutually resonant.

Case 2: x1 = x2 = x3 = 1 and 1 = y1 < y2 < y3 � q − 1. We choose vertical
edges w2j b0,j−1, j = 2, . . . , y2 − 1, y2 + 1, . . . , y3 − 1, y3 + 1, . . . , q − 1.
We further choose one vertical edge w00bt+1,q−1 when t = 1 and 2, and
w20b0,q−1 when t = 0. By the same reason as the above such three hexa-
gons are mutually resonant.

Case 3: {x1, x2, x3} = {1, 2} and 1 = y1 < y2 < y3 � q − 1. If x1 = 1, x2 =
2 and x3 = 1, then we choose vertical edges w1j b2,j−1, j = 2, . . . , y2 −
1; w2j b0,j−1, j = y2 + 1, . . . , y3 − 1, y3 + 1 . . . , q − 1(y2 + 1 < y3). We fur-
ther choose one vertical edge w00bt+1,q−1 when t = 1 and 2, and w20b0,q−1

when t = 0. The chosen hexagons and edges form an ideal configuration.
Similarly, we can show the remaining subcases to have an ideal config-
uration containing the chosen hexagons. Hence such three hexagons are
mutually resonant.
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(a) (b)

Figure 10. An ideal configuration of (3, 7, t) for (a) y2 = 3, y3 = 5 and t = 1, (b) y2 = 5, y3 = 3
and t = 0.

Lemma 4.3. For p � 4, H(p, 3, t) is 3-resonant if and only if t = 0, p − 3, p − 2
or p − 1.

Proof. For p � 5 and t ∈ Zp \ {0, p − 3, p − 2, p − 1}, we choose three disjoint
hexagons (1, 1), (p − 1, 1) and (t + 1, 2). Then the vertex w00’s neighbors b10, b00

and bt+1,2 are vertices in hexagons (1, 1), (p − 1, 1) and (t + 1, 2), respectively.
Hence the chosen hexagons are not mutually resonant. That says that H(p, 3, t)

is not 3-resonant if t /∈ {0, p − 3, p − 2, p − 1} for p � 4.
For t ∈ {0, p − 3, p − 2, p − 1}, we now show that H(p, 3, t) is 3-resonant.

It suffices to show that any three disjoint hexagons (xi, yi), xi ∈ Zp and yi ∈ Z3,
i = 1, 2, 3, are mutually resonant. By l-r and t-b shift operations there are three
cases to be considered.

Case 1. y1 = 0, y2 = 1 and y3 = 2. Such three hexagons form an ideal configu-
ration and are thus mutually resonant by Lemma 3.1.

Case 2. y1 = y3 = 1, y2 = 2 and 1 = x1 < x2 < x3 � p − 1. If t = 0 and p − 1, we
choose wxi−1,0bxi+t,2, i = 1, 3, and wp−1,2b01 as distinguished edges, see fig-
ure 11. We only list the incident vertices of the chosen hexagons and verti-
cal edges on the 2nd layer as b1+t,2, wx2−1,2, bx2,2, wx2,2, bx3+t,2, wp−1,2 in one
direction of the cycle. If t = p−2 and p−3, choose wxi+1,0bxi+t+2,2, i = 1, 3,
and wp−1,2b0,1 as distinguished edges. The corresponding incident vertices
are ordered as b3+t,2, wx2−1,2, bx2,2, wx2,2, bx3+t+2,2, wp−1,2 (note that x2 <

x3 − 1). As for the 0th and 1st layers, the similar facts are obvious. Hence
to each subcase the three hexagons and all chosen edges compose of an
ideal configuration. By Lemma 3.1 such three hexagons are mutually res-
onant.

Case 3. y1 = y2 = y3 = 1 and 1 = x1 < x2 < x3 � p−1. We choose vertical edges
wxi,2bxi+1,1, i = 1, 2, 3. If t = 0, p − 1, we further choose wxi−1,0bxi+t,2,
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Figure 11. An ideal configuration of H(8, 3, 0) for x2 = 3, x3 = 6 and t = 0.

i = 1, 2, 3. If t = p − 2, p − 3, we further choose wxi+1,0bxi+t+2,2, i =
1, 2, 3. To each subcase the three hexagons and all chosen edges compose
of an ideal configuration. By Lemma 3.1 such three hexagons are mutu-
ally resonant.

Lemma 4.4. For p � 3, H(p, 2, t) is 3-resonant if and only if t = 1, p − 3 or
p − 1.

Proof. For t ∈ Zp \ {1, p − 3, p − 1}(p � 4), we choose disjoint hexagons
(1, 1), (t + 1, 1) and (p − 1, 1) of H(p, 2, t) (note that if t = 0 and t = p − 2,
then two of them are coincidence). The vertex w00 has three neighbors: b10, b00

and bt+1,1, which are all included in the chosen hexagons. This implies that
H(p, 2, t)−h1,1−ht+1,1−hp−1,1 has no perfect matching. Hence H(p, 2, t)(p � 3)

is not 3-resonant for t /∈ {1, p − 3, p − 1}.
We now show that if t ∈ {1, p − 1, p − 3}, H(p, 2, t)(p � 3) is 3-resonant.

Since it is 2-resonant (Lemma 3.4 or Theorem 3.6), it suffices to show any three
disjoint hexagons (xi, yi), xi ∈ Zp and yi ∈ Z2, i = 1, 2, 3, are mutually resonant.
By the l-r and t-b shift operations (equation (1) to (3)) there are two cases to be
considered.

Case 1. y1 = y2 = y3 = 1 and 1 = xi < x2 < x3 � p − 1. If t = 1 or p − 1,
then we choose the edges wxi−1,0bxi+t,1, i = 1, 2, 3; if t = p − 3, then we
choose the edges wxi+1,0bxi+t+2,1 for i = 1, 2, 3. Then the chosen hexagons
and edges form an ideal configuration and such three hexagons are thus
mutually resonant by Lemma 3.1.

Case 2. y1 = y3 = 1, y2 = 0 and 1 = x1 < x2 < x3 � p − 1. If t = p − 1,
then we only choose the edge w00b01 (see figure 12 (right)). If t = 1, then
x3 � x2 + 3. We choose edges wxi−1,0bxi+1,1, for i = 1, 3, and wx2,1bx2+1,0

(see figure 12 (left)). If t = p − 3, then x2 − x1 � 4. We choose the edges
wxi+1,0bxi−1,1 for i = 1, 3, and wx2−2,1bx2−1,0. In any subcase the chosen
hexagons and vertical edges form an ideal configuration and such chosen
hexagons are mutually resonant by Lemma 3.1.
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Figure 12. Illustration for Case 2 in the proof of Lemma 4.4 (t = 1 and t = p − 1).

Automatically H(2, 3, t) and H(2, 2, 1) are 3-resonant. Combining Lemmas
3.5 and 4.1–4.4, we obtain the following criterion for the 3-resonance of toroidal
polyhexes.

Theorem 4.5. For p � 2 and q � 2, a toroidal polyhex H(p, q, t) is 3-resonant
if and only if one of the following cases appears

1. (p, q, t) = (2, 2, 1),

2. p = 2 and q = 3,

3. p = 3 and q � 2,

4. p � 4, q = 2 and t ∈ {1, p − 3, p − 1},
5. p � 4, q = 3 and t ∈ {0, p − 3, p − 2, p − 1}.
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